Investors Briefing - Next Generation Fuels

 \rightarrow

24th October 2025

Takahiro Rokuroda

General Manager

Next Generation Fuel Business Group

NYK Line

#0 Directions of International Shipping

Toward Decarbonization

International shipping accounts for approx. 2% of global CO₂ emissions

Targets Set at MEPC* 80 (July 2023)

Reduce total CO₂ emissions by 20–30% (compared to 2008)

• Achieve 5–20% share of zero-emission fuels in energy mix

2040

Reduce total GHG emissions by 70–80% (vs 2008)

2050

Achieve Net-Zero GHG emissions

Approval of mid-term GHG reduction measures (April 2025)

- GHG Fuel Intensity Regulation (GFI) GHG emissions pricing contributions
- IMO Net-Zero Fund Reward

^{*} MEPC: Core IMO committee responsible for marine environmental protection. The committee meetings are held once or twice a year to update regulations such as MARPOL 73/78 Convention

Regulating GHG Emissions from Ships

Regulations currently running and/or under formulation process

	EU ETS	СВАМ	Fuel EU maritime	GFI
Region	Europe	Europe	Europe	Global
Regulation/ Supporting Schemes	 Market-based emission trading system (cap- and-trade) 	Carbon Border Adjustment Mechanism (linked to EU ETS)	European fuel-based GHG regulation under EU	Global fuel-based GHG regulation under IMO
Effective date	2024/1/1~	2026/1/1~	2025/1/1~	2028/1/1~*2
Subjects	 GHG emissions (gCO₂eq) from EU voyages and ports 	Import products (e.g., fertilizers, steel, hydrogen)	 Vessels' fuel GHG intensity (gCO₂eq/MJ) calling at European ports 	Vessels' fuel GHG intensity (gCO₂eq/MJ)
Mechanism	 Companies must surrender EU Allowances (EUA) for verified emissions. CO₂ price drives decarbonization (€70–100/t CO₂). 	 Importers buy CBAM Certificates based on embedded CO₂ emissions to align with EU ETS carbon cost. Ships exceeding GHG targets must pay FuelEU Penalty. Annual targets tighten progressively. 		 Ships exceeding GHG targets must purchase Remedial Units (\$100– 380/t CO₂eq until 2030). Annual targets tighten progressively.
Impact	 Introduces carbon cost to shipping activities; encourages low-carbon fuel use. 	 Prevents carbon leakage by equalizing CO₂ costs for imports. 	Promotes transition to low/zero-carbon fuels regionally.	 Promotes transition to low/zero-carbon fuels globally beyond vessel design efficiency.

^{*1} Price linked to EUA

*2 Not officially adopted

Pathways to Achieve IMO 2050 Goal

Post Extraordinary MEPC – Temporary Delay, Same Direction

- The Adoption at the Extraordinary MEPC has been postponed by one year
- Still, the overall direction & momentum to combat GHG <u>remains unchanged</u>

International Shipping requires GHG regulations at the IMO level

- A borderless industry with its emission not attributable to any specific countries/regions
- A globally consistent regulatory framework is indispensable for GHG control

Multiple Pathways to Achieve the IMO 2050 Goal

- Fuel Saving Technologies wind propulsion & energy-saving devices
- Operational Efficiency with DX & digital tools
- Fundamental Solution = <u>Fuel Conversion</u> to low-carbon / carbon-free fuels

#1 Why Ammonia?

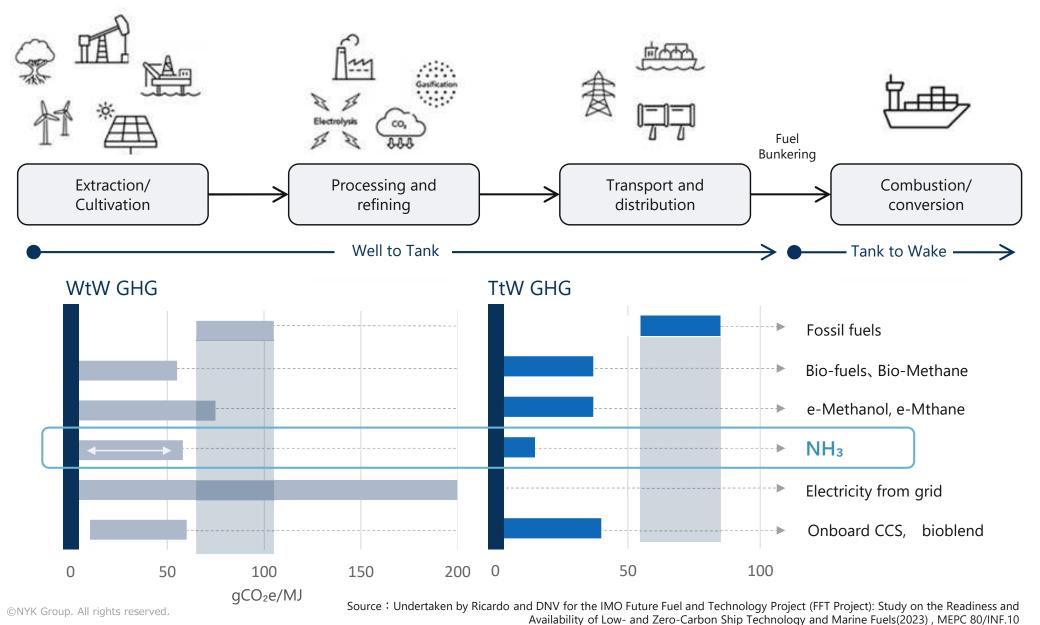
Why Ammonia? 1 Comparison of characteristics

NYK is betting on All Options, with a particular focus on ammonia

Non-hydrocarbon: No CO₂ emitted when burned

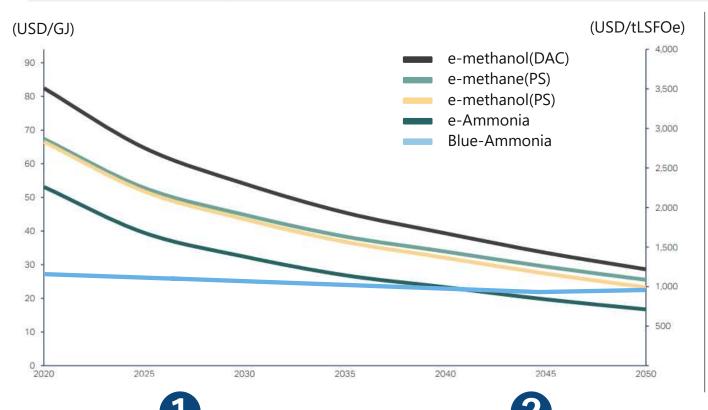
Boiling Point: Requires temperature control but significantly easier than LNG

Toxic/Corrosive: Safety above all


Low Energy Density: Requires larger space for storage

		Low-Carbon Fuel			Zero-Carbon Fuel	
	VLSFO	LNG	Propane	Methanol	Hydrogen	Ammonia
Lower Heating Value (GJ/t)	40.4 (39.8–41.7)	48.0 (46.5–50.4)	46.3	19.9	120.0	18.8
CO ₂ Conversion Factor (CO ₂ -t/Fuel-t)	3.114	2.693	3.000	1.375	0	0
Volumetric Ratio per Heat (vs. VLSFO, liquid state)	1.00	1.63	1.62	2.39	4.42	2.86
CO ₂ Emission per Heat (CO ₂ -g/GJ)	77.38	56.10	64.79	69.10	0	0
By-product GHG & Warming Factor	-	Methane (slip) GWP:28	-	-	-	N₂O GWP:265
Boiling Point (°C)	200–400	-162	-42	65	-253	-33
Pilot Fuel	Not required	Required	Required	Required	Required	Required

Why Ammonia? ② GHG Reduction


"Clean NH₃" will play a crucial role in reducing GHG emission

Why Ammonia? 3 Affordability

Ammonia will grow more affordable

Key Insights

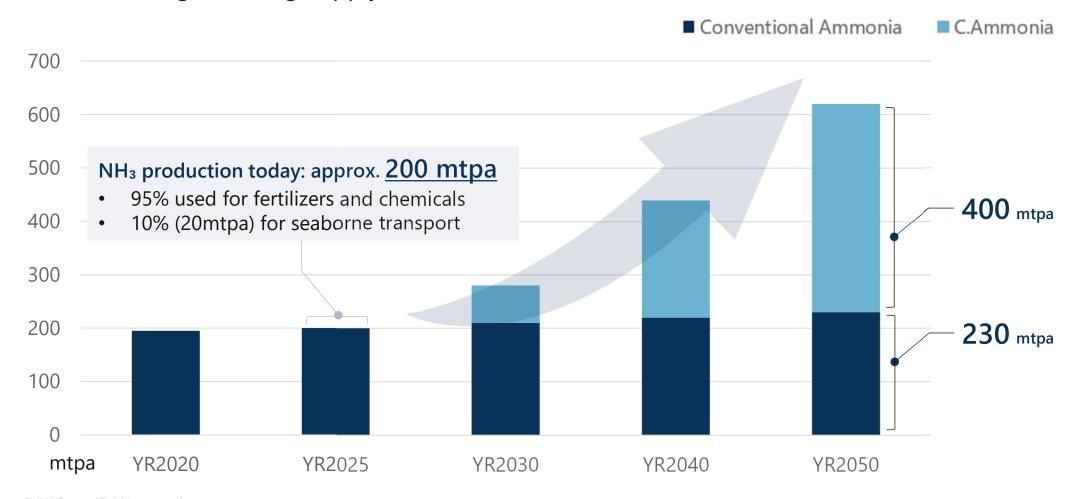
- ✓ Blue NH₃ is presently positioned as relatively price-effective
- ✓ e-NH₃ expected to outcompete Blue by 2040 or even earlier as H₂ costs fall, becoming the most affordable fuel

		(/ton)
Material Volume Required	e-Methanol	e-Ammonia
H ₂	0.188	0.177
CO ₂	1.373	-
N_2	-	0.822

Material Unit Cost	Now	2030	2050
H ₂	\$5,000	\$2,500	\$1,450
CO ₂	\$600	\$400	\$250
N ₂	\$160	\$160	\$160

(/ton)

1	X	2


(/ton)

Material Procurement Cost		Now	2030	2050
)	e-Methanol	\$1,764	\$1,019	\$616
	e-Ammonia	\$1,017	\$574	\$388

Why Ammonia? 4 Scalability & Availability

- Diversified application from fertilizers to <u>power/marine fuels & H₂ carriers</u>
- Enabling <u>demand aggregation across sectors</u> to realize <u>economies of scale</u>
- Abundant feedstock availability clean H₂ and N₂
- Can leverage existing supply chain and infrastructure

Why Ammonia? 4 Scalability & Availability - Marine Fuel

IEA prediction: 44% of marine fuel to be NH₃ by 2050

Fuel consumption: service:

Conventional fuel oil 200 mil. tons (93%)

216 mil. tons/year*1

Alternative fuel 16 mil. Tons *2 (7%)

The required amount for a full transition to zero-emission fuels would be...

For methanol	440 mil. tons/year
For ammonia	470 mil. tons/year
For methane/I NG	180 mil tons/year

Vessel in service:

Conventional fuel ships 37,777 ships (96%)

39,410 sihps *3

Alternative fuel ships *4 1,633 ships (4%)

A transition of 37,777 ships to alternative fuels is necessary. (Alternative fuel ships can use zero-emission fuels.)

*3 5,000 gross tonnage and above (as of the end of June 2025, adjusted for fractions)

*4 LNG-fueled LNG carriers included.

^{*1} The annual fuel consumption for ships engaged in international voyages with 5,000 gross tonnage and above (abt. 30,000 ships subject to IMO DCS) in 2023 (conventional fuel oil equivalent)

^{*2} Conventional fuel oil equivalent (of which 98% is LNG fuel.)

Why Ammonia? 5 Support from Public Sector

Public sector's support will greatly encourage fuel transition to H₂/ NH₃

	H2 Global*1	Japanese CfD	CHPS	IRA - 45Q
Region				
Regulation/ Supporting Schemes	Supporting Schemes	Supporting Schemes	Supporting Schemes	Supporting Schemes
Effective date	Commercial Operation should start by 2027 *3	Commercial Operation should start by FY2030	Commercial Operation should start by 2028 *3	2023/1/1~
Applicable period	7 years from the start of operation*2	15years from the start of operation	15years from the start of operation	12 years from the start of operation
Subjects	Low-carbon hydrogen derivatives	Low-carbon hydrogen derivatives	power generation with Hydrogen/Ammonia	CO2
Mechanism	Price gap between selling price and purchase price will be covered (Double- auction mechanism)	Price gap between conventional fuels and Hydrogen derivatives will be covered	Cost gap between clean hydrogen-based power and conventional power generation will be covered	Company will obtain CO2 tax credit based on their CCUS activities

^{*1} Mainly Germany

^{*2 1}st round

^{*3 1}st round

Why Ammonia? 6 IMO Regulations


At MEPC 83 in this April, a new regulatory framework was approved to reduce GHG emissions by controlling the intensity of fuels used in international shipping and promoting zero-emission vessels.

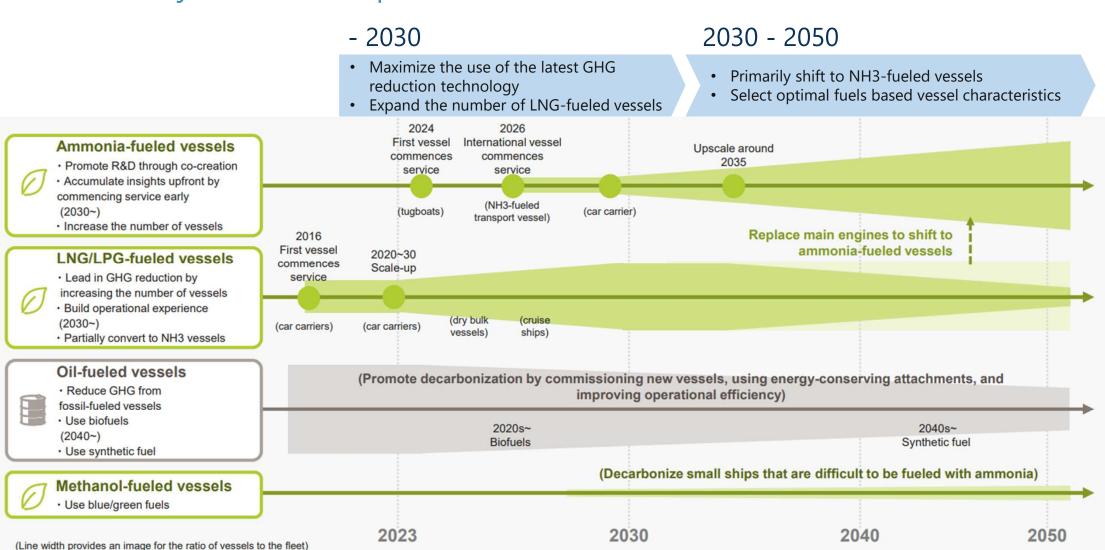
New Enforcement System for Non-Compliance - from 1 Jan 2028

- Fuel-based GHG billing scheme (GFI) for Well-to-Wake emissionsTarget:
- Reduce GHG intensity from 93.3 gCO₂eq/MJ (2028–2035)
- Remedial Units: \$100–\$380/ton CO₂eq (until 2030; post-2030 TBD)
- Pending: Enforcement rules, post-2031 RU scheme, long-term targets.

(GCO2EQ/MJ)

GHG Fuel Intensity Targets tighten progressively each year for both Base and Compliance levels.

#2 NYK's Strategies



NYK's Strategies – Fuel transition roadmap toward NZ by 2050

- Multiple alternative fuels will be used concurrently all within NYK's scope
- Varied trajectories of adoption and diffusion

NYK's Strategies – Value Chain Approach

- Value Chain Approach covering up/mid/down stream
- A journey NYK has already experienced in LNG
- Clean fuel NH₃ industries need to join forces to establish new market

Upstream /Production

Midstream /Transportation

Downstream
Bunkering / Use

LNG Carrier LNG powered

LFV/LNG Fueled Car Carrier

*Ex: LNG Wheatstone Project

LBV/LNG Bunkering Vessel

Ammonia Value Chain

*Ex: Blue/Green project

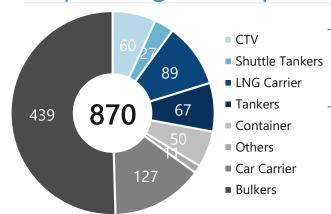
Ammonia Gas

Carrier

ABV Ammonia Bunkering Vessel AFT
Ammonia Fueled
Tug boat
GI fund

Supply

NYK's Strategies - Value Chain (Japanese market)


- Japan to lead new clean NH₃ s/c from power sector
- Demand aggregation from ships will further boost the scale of supply chain

NYK's Strategies – Value Chain (Midstream)

Expanding from upstream to downstream, with a focus on midstream

Seaborne NH₃ trade 20mpta (present)→160mtpa (2050)

| Targeting more than 10% share

Further expanding with ammonia carriers

		Entered	Entry under cons	sideration	Entered (Green business)	Entry under conside	eration (Green business)
N = C	- A	109	· ·	Hanne		Massar	<u>#</u>
Exploration	Drilling	Development	Production / Storage	Regional Transport	Purification / Liquefaction / Storage	Transport	Customers
		LNG Upstream Busine	ess (Wheatstone Project)		FLNG	LNG Carriers	FSRU / FSU
vestigation / eophysical xploration Vessel	Drillship		FPSO	Shuttle Tanker	LNG Midstream Business	Tanker (Petroleum / LPG/ Chemical)	LNG Fuel
xpioration vesser			FSO		(Cameron Project)	Coal Carriers	Sales Business
		Ammonia / Hydr	ogen Production		Ammonia Floating Storage	Ammonia Fuel Ammonia Gas Carriers	Ammonia Tugboat
						Overseas Ammonia Transport Ammonia Coastal Transport Liquefied CO ₂ Transport MCH Transport Liquefied Hydrogen Carrier	Ammonia Floating Storage Ammonia and Hydrog Fuel Sales Business Current / Tidal Powe Generation

NYK's Strategies – Value Chain (Downstream=Bunkering)

- One of the world's largest operating fleet large amount of captive fuel demand
- Leveraged captive demand to pioneer LNG by concurrently driving demand & supply
- Uniquely positioned to realize bunkering businesses of next-generation fuels

Demand

Japan's 1st LNG-fueled tugboat,

- "Sakigake" (Delivered in 2015)
- · Reborn as an ammonia-fueled in 2024

2×World's 1st LNG-fueled PCC

- United European Car Carriers
- Delivered in 2016

Japan's 1st LNG-fueled PCC

- Delivered in 2020
- CO2 emission have been reduced by 40%

Build 20 LNG-fueled PCCs by 2028

Most new PCCs to be LNG-fueled.

World's 1st LNG-fueled Coal Carrier

- Delivered in October 2023
- 3 coal carriers by end-2025

LNG-Fueled Capesize Bulk Carriers

- Delivered in January 2024
- 5 vessels by 2025

Supply

Green Zeebrugge
Delivered in 2017

Japan's First LNG bunkering Vessel

Kaguya
Delivered in 2020

LNG bunkering Vessel in Western Japan

KEYS AzaleaDelivered in 2024

NYK's Strategies – Technical Expertise as a Frontrunner

A-tug "Sakigake"

World's first Truck to Ship ammonia bunkering at Yokohama

• Procurement from JERA and Resonac.

′24/8

Retrofitted at the Keihin Dock (NYK subsidiary)

- World's first ammonia-fueled commercial vessel.
- In tug & towing operations in Tokyo Bay.
- ·3 mth demonstration to verify safe operation and emissions. Confirmed GHG reduction is up to about 95%

'25/3

A-Tug project completion ceremony.

Ammonia co-firing rate/GHG reduction rate

M/E load	100%	75%	50%	25%
NH₃ Co-firing rate	95.2%	94.8%	93.4%	91.1%
GHG reduction rate*	94%	94.4%	93.0%	90.3%

*GHG emission compared to Fuel Oil

NYK signed AFAGC SBC (Dec 2023)

Developed the design to obtain NK's MRS notation

*Machinery Room Safety for ammonia

Ammonia-Fueled DF main engine (J-ENG)

- ✓ High mixing and firing rates (~95%) achieved in single-cylinder tests; N₂O emissions limited.
- ✓ Ammonia operation in actual equipment started in Apr 2025.

<u>Ammonia-fuelled DF auxiliaries</u> (IHI Power System)

✓ High mixing and firing rates (approx. 80%) achieved through field trials.

Our Milestones

Approval of Basic Design for Bunkering Boom (Jul 2024)

Jointly developed with TB Global Co., featuring emergency-release system to improve safety.

Conclusion of Time-Charter Agreement for AFAGC (Feb 2025)

Signed the world's First Time-Charter Agreement for AFMGC with Yara Clean Ammonia.

The world's first commercial ammonia fueled engine by Japan Engine (Aug 2025)

Engine's environmental performance and safety were certified by ClassNK.

Completion of the Ammonia-Fueled Tugboat (Aug 2024)

The world's first ammonia-fueled tugboat was completed, marking the start of zero-emission operation trials in ports.

Large-Scale Ammonia Ship-to-Ship (StS) Operation Achieved (Sep 2025)

Successfully conducted large-scale ammonia transfer under near-commercial conditions, confirming the feasibility of commercial StS operations.

Creating Environmental Value through the Development of Ammonia Medium Gas Carrier(MGC) (Planned Nov 2026)

Building a dedicated ammonia carrier to establish a global large-scale transportation framework.

Press Released

- Dec 06 2023

Mitsui Concludes Contract to Supply Ammonia for Co-firing Demonstration Project at Unit 4 of the JERA Hekinan Thermal Power Station

Mitsui & Co., Ltd. ("Mitsui", Head Office: Tokyo, President and CEO: Kenichi Hori) and JERA Co., Inc. ("JERA") have concluded a sales agreement covering the supply of fuel ammonia for use in ammonia co-firing trials at the JERA Hekinan Thermal Power Station (Hekinan-shi, Aichi Prefecture).

Since fiscal 2021, JERA has been implementing a demonstration project to establish technology for large-scale ammonia fuel co-firing at the Hekinan Thermal Power Station. For this demonstration project, under the said sales agreement, Mitsui will supply ammonia for use as a fuel in large-scale co-firing (co-firing rate: 20%) at Unit 4 of the Hekinan Thermal Power Station.

Dec. 06, 2023

Press Release

NYK Concludes Time Charter Agreement for Fuel Ammonia Transport

Developing a marine transportation system for future expansion of the fuel ammonia market

In October, NYK signed a time charter contract with Mitsui & Co., Ltd. (hereinafter "Mitsui"; head office: Tokyo; president: Kenichi Hori) for the transport of ammonia. The vessel Berlian Ekuator, owned and operated by NYK, will be used for the shipments.

The vessel will transport fuel ammonia to be used by JERA Co., Inc. (hereinafter "JERA") in the world's first large-scale fuel-conversion demonstration test,* which will be conducted at unit 4 of JERA's Hekinan Thermal Power Station. In June, Mitsui and JERA signed an ammonia sales and purchase agreement to be used in the demonstration test.

Fuel ammonia transportation for the trial

BERLIAN EKUATOR

SM : NYKMS LOA : 169.9 m

Beam : 27.4 m

Capacity: about 35,500m3

Built YR : 2004

Key takeaways

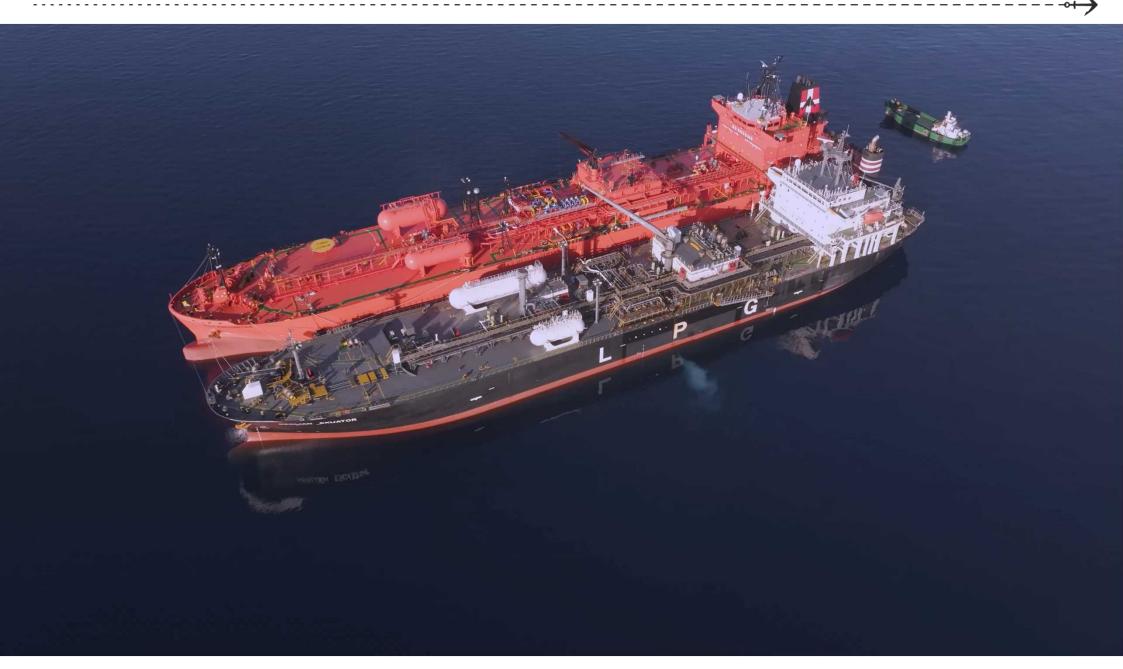
- ✓ Importance of Ship Management Thorough maintenance before discharge (Essential for older vessels)
- ✓ Operational Knowledge Close coordination with terminal to optimize fuel ammonia transport to power plant.

Press Released

- Sep 24 2025

Successful Ship-to-Ship Transfer of 23,000 Tons of Liquefied Ammonia Achieved

Advancing the global ammonia supply network through STS technology


On September 2, a ship-to-ship (STS)* ammonia transfer was executed from the ammonia carrier Berlian Ekuator — owned by NYK and time-chartered by Mitsui & Co., Ltd. — to the ammonia carrier Eco Enchanted, operated by Trammo, Inc., a leading ammonia trader. The transfer was conducted in accordance with stringent safety protocols on the high seas off the coast of Ceuta, Spain.

While NYK has experience with STS transfers involving crude oil, liquefied natural gas (LNG), and liquefied petroleum gas (LPG), this marks our first operation involving liquefied ammonia.

With the support of Trammo's longstanding experience and their designated STS specialist provider, International Fender Providers Ltd.,** we successfully leveraged our advanced safety management system and refined STS operational know-how to safely transfer the entire cargo of liquefied ammonia, approximately 23,000 MT, to Berlian Ekuator.

Press Released

- Oct 15 2025

World's First Environmental Value Created through Operation of NYK Ammonia-fueled Tugboat

Expanding the environmental contribution potential of fuel ammonia

Shin Nippon Kaiyosha obtained third-party certification on 25th September, 2025 for the environmental value¹ representing the quantified greenhouse gas (GHG) emissions reduced through the towage services² provided by the ammonia-fueled tugboat Sakigake (the "vessel").

This certified environmental value can be allocated to purchasers through the Book & Claim method³ and is expected to contribute to the reduction of Scope 3 emissions⁴ by transportation service users in the future. This is the world's first instance that environmental value derived through the operation of an ammonia-fueled vessel has received third-party validation.

Selected in October 2021 as part of NEDO's⁵ Green Innovation Fund project, "Development of ships withammonia fueled domestic engines", Sakigake is the world's first ammonia-fueled vessel developed for commercial use. The vessel is fueled by low-environmental-impact ammonia "ECOANN," manufactured by Resonac Corporation and provided by JERA Co., Ltd. Since its completion in August 2024, Sakigake has been providing safe and low-carbon tugboat services in Yokohama port.

GHG emissions from cargo transportation are commonly classified as Scope 3 for transport service users, requiring collaboration across the entire supply chain to reduce them. By visualizing GHG reductions in the shipping industry, this initiative paves the way for future Scope 3 emission reductions by shippers and consideration of additional GHG reduction measures, further expanding the potential environmental contribution of ammonia as a marine fuel.

Moving forward, NYK will continue to focus on developing a fuel ammonia value chain and advancing decarbonization within the shipping and marine industries. This commitment includes the development of the ammonia-fueled medium gas carrier (AFMGC), scheduled for completion in November 2026, that NYK is developing in collaboration with others.

Press Released

- Feb 10 2025

Yara and NYK Conclude World's First Time-Charter Agreement for Ammonia-Fueled Medium Gas Carrier

Yara Clean Ammonia Switzerland SA (Yara Clean Ammonia)*, a subsidiary company of Yara International ASA (Yara), the world's largest ammonia distributor, signed a time-charter contract with Nippon Yusen Kabushiki Kaisha (NYK) for an ammonia-fueled medium gas carrier (AFMGC) to be delivered in November 2026.

Signing Ceremony

Left: Csaba Laszlo, Vice President, Yara Clean Ammonia Right: Hironobu Watanabe, Managing Executive Officer, NYK

Top Management Meeting

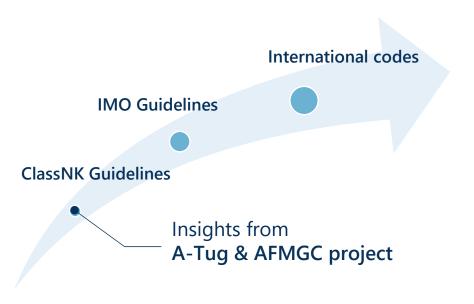
Front Left: Hans Olav Raen, CEO, Yara Clean Ammonia

Back Left: Murali Srinivasan, Senior Vice President, Yara Clean Ammonia

Front Right: Takaya Soga, President, NYK

Back Right: Tsutomu Yokoyama, Executive Officer, NYK

NYK's Strategies – advocacy & rule-making



Objective: Prove ammonia works & to establish a new NH₃ market

- Shipowners to adopt ammonia as a fuel.
- Ammonia producers to support production of clean ammonia for bunkers.
- Shipbuilders / Engine & Machinery manufacturers to drive production & reduce costs.
- Regulators to formulate rules and regulations to govern/incentivize the use of ammonia.
- Ports & Terminals to invest in relevant infrastructure.
- All Parties to join force to create sustainable and large-scale supply chain of clean ammonia.

Strategy: "Standardization & Regulation"

- Share the tries/errors/lessons learned through our project with Class society & Regulators.
- Establish common understanding of safety & effective combustion to combat GHG emission.
- Support the regulators to formulate adequate rules to govern the use of ammonia as a marine fuel.

Steps	Summary
NK Guidelines	 Aug 2021 released "Guidelines for Ships Using Alternative Fuels". Jul 2024 released edition 3.0.3 of the "Guidelines"
IMO Guidelines	<igf> Finalized at CCC10 (Sep.2024) Approved at MSC109 (Dec.2024), Issued Interim Guidelines (Feb.2025) <igc></igc> Finalized at CCC11 (Sep.2025) </igf>
International Codes	To be adopted as international code in 2028

NYK's Strategies – Challenges

Ammonia fuel still faces challenges - join forces across all sectors

Supply Chain

Production, transport, and supplying infrastructure for fuel ammonia is not yet in place.

- Production: Development of upstream projects
- Transportation: Establishing Marine Transportation based on volume
- Supply: Develop supply facilities, including bunkering vessels

Shipbuilding Capacity

Japan lacks production facilities for competitive Ammonia Fueled vessels.

- Makers: Expand production lines for next-generation engines and fuel supply systems (%partially supported by subsidies funded by GX transition bonds)
- Shipbuilders: Develop building capacity or the vessels

Cost Effectiveness

High CAPEX for Ammonia Fueled vessels and Bunkering Vessels. Fuel ammonia is also costly.

Establish economic viability for fuel ammonia

- Coordinate with fuel supply chain development for power generation to reduce fuel unit cost
- Share decarbonization costs for Scope 3 across the entire supply chain

Rules

Safety standards, GHG regulations, and incentives for new fuel are not yet established.

Set safety standards

Create economic incentives for next-generation fuels

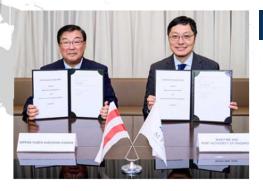
- Introduce carbon cost for conventional fuels
- Expand subsidies for next-generation fuel ships
- Establish a fair system to evaluate and measure GHG reduction

NYK's Strategies – Partnership

- No single player can solve all challenges or create a new market alone
- Collaboration across industries, NGOs/NPOs, and regulators is essential

Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping

CFAA(Clean Fuel Ammonia Association)


CLEAN FUEL AMMONIA ASSOCIATION

GCMD(Global Centre for Maritime Decarbonisation)

Global Centre for MARITIME DECARBONISATION

Maritime & Port Authority of Singapore (MPA)

Press Released

NYK and Singapore's MPA sign MoU to advance maritime decarbonization, digitalization and manpower development in July 2024.

免責事項

本資料は、電子的または機械的な方法を問わず、当社の書面による承諾を得ることなく複製又は頒布等を行わないようお願いします。

Legal Disclaimer

No part of this document shall be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of NYK Line.